SOME ESTIMATES FOR CONVEX POLYNOMIAL APPROXIMATION IN Lp
نویسندگان
چکیده
We prove a direct theorem for convex polynomial L p-approximation, 0 < p < 1, in terms of the classical modulus of smoothness ! 3 (f; t) p. This theorem may be regarded as an extension to L p of the well-known pointwise estimates of the Timan type and their variants of R. DeVore, Y. K. Hu and D. Leviatan for convex approximation in L p. It leads to a characterization of convex functions in Lipschitz classes (and more general Besov spaces) in terms of their approximation by algebraic polynomials.
منابع مشابه
Convex Polynomial and Spline Approximation in Lp , 0 < p <
We prove that a convex function f 6 L p [ -1 , 1], 0 < p < cx~, can be approximated by convex polynomials with an error not exceeding Cw~ (f, 1/n)p where w~(f, .) is the Ditzian-Totik modulus of smoothness of order three of f . We are thus filling the gap between previously known estimates involving og~(f, I/n)p, and the impossibility of having such estimates involving ~o4. We also give similar...
متن کاملSome results of 2-periodic functions by Fourier sums in the space Lp(2)
In this paper, using the Steklov function, we introduce the generalized continuity modulus and denethe class of functions Wr;kp;' in the space Lp. For this class, we prove an analog of the estimates in [1]in the space Lp.
متن کاملConvex Relaxation Methods for Nonconvex Polynomial Optimization Problems
This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...
متن کاملThe Bramble-Hilbert Lemma for Convex Domains
The Bramble-Hilbert lemma is a fundamental result on multivariate polynomial approximation. It is frequently applied in the analysis of Finite Element Methods (FEM) used for numerical solutions of PDEs. However, this classical estimate depends on the geometry of the domain and may ‘blow-up’ for simple examples such as a sequence of triangles of equivalent diameter that become thinner and thinne...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کامل